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Introduction  

In this paper, we consider a mathematical model for the vertical 
transmission for an epidemic spreading in an age-structured population 
where the transmission coefficient depends on age. The term vertical 
transmission means the transmission of a disease from infected mothers to 
their unborn or newly born babies. It is commonly referred to as mother to 
child transmission. Examples of the disease that can be transmitted 
vertically such as gonorrhea, syphilis, herpes, tuberculosis and most 
recently HIV/AIDS. HIV in children is generally more serious than adults 
due to faster disease complications and progression [3-8, 13-23]. Vertical 
transmission of HIV/AIDS has been the principal cause of 80-90% of HIV-
infected children [21]. The age-structured epidemic model with vertical 
transmission have been analyzed by several authors, especially we can 
refer to Mugisha and Luboobi, Busenberg and Cooke [ 20, 22]. 
Review of Literature 

Age–structured models are most commonly used to see the most 
serious impact of HIV/AIDS on a particular age group of interest. such 
models give clear clue as to which age group of society should be 
concentrated on in terms of treatment, education and the kind of strategies 
for containing the spread[9-12]. In particular, Blynthe & Anderson et al. [2]  
developed an age–structured model to study the effect of sexual activity 
levels. In Anderson et al. [1], Anderson et al. presented an age–structured 
model to study the role of sexual contact and proportionate mixing in a 
population with HIV/AIDS. Loboobi [16] and Mugisha & Luboobi [18] 
worked with models for the study of the dynamics of HIV/AIDS in a three-
age group population. in the models a population divided into three age 
groups was studied. Mugisha & Luboobi [19] models, the dynamics of 
HIV/AIDS with a possible vaccination strategy was studied in a two age 
groups population. 

All above described models involve partial differential equation. 
Our model is derived as a system of partial differential equation then the 

Abstract 
In this paper, we use a continuous age-structured model to 

derive a two-age groups HIV/AIDS epidemic model. We assume that HIV 
infection confers treatment, and the infective agent can be transmitted 
not only by horizontally but also vertically from adult individuals to their 
newborn. The model is first derived as a system of partial differential 
equations, and then age groups are defined so that by adding up all the 
individuals within each age group, the model reduces to a system of 
ordinary differential equations. In the analysis of the model, keen interest 
is put on the role of treatment; in the dynamics of the spread of the  
epidemic. The model is analyzed when the force of infection is a 
constant. In the this case, the only possible equilibrium is the endemic 
equilibrium. The model is analyzed by using stability at both the disease-
free and endemic equilibrium exists. The model is analyzed by using 
stability theory of differential equation and numerical simulation. The 
model analysis shows that the increase in treatment will decrease the 
epidemic and the epidemic slows down more rapidly if the treated 
infectives do not take part in the sexual contact. Finally, in order to verify 
our theoretical results, some numerical simulations are also included. 



 
 
 
 
 

197 

 

 

P: ISSN No. 0976-8602       RNI No.UPENG/2012/4262     VOL.-8, ISSUE-2 (Part-1) April 2019 

E: ISSN No. 2349-9443                                            Asian Resonance 

 model is reduced to a system of ordinary differential 
equation [20, 24]. Our model is the advancement of 
the model of J.Y.T. Mugisha and L. S.  

Luboobi [20] following respect: herein we 
consider four dimensional system while they used 
three dimensional system. We also taken vertical 
transmission through treated infectives.  

In view of the above, in this paper, we have 
proposed and analyzed a continuous age distribution 
model of HIV/AIDS with vertical transmission. The 
numerical analysis of the proposed model is also 
carried out to investigate the influence of some 
important parameters on the spread of the disease. 
The Basic System 

Let us divide the host population into four 
subpopulations; the susceptible class, the normal 
infective class, the treated infective class and the 
AIDS patients. The age-density functions of each 
class are denoted by S(a, t), I(a, t), U(a, t) and A(a, t). 

Let  t,a  is the age-specific force of infection due 

to normal infcetves,  t,a  is the age-specific force 

of infection due to treated infcetves,  a  the rate at 

which normal infectives at age a become treated, 

 a  the rate at which normal infectives at age a 

become AIDS patients,  a  the rate at which 

treated infectives at age a become AIDS patients, 

 a  the HIV/AIDS epidemic-free mortality at age a 

and  ad  the rate at which AIDS patients at age a 

are dying due to AIDS. Then the basic system(age-
structured model) with vertical transmission can be 
formulated as follows: 

           t,aSat,at,a
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With boundary conditions given by 

             
M
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0

10 

 
 (2.5) 

            
M

daat,aIpt,I
0

10       (2.6) 

              
M

daat,aUbt,apIt,U
0
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(2.7) 

Where  a  is the per capita birth rate age 

a,  t,S 0  is the total number of babies born 

uninfected,  t,I 0  is the total number of babies born 

infected which are not subjected to treatment and 

 t,U 0  is the total number of babies born infected 

which are subjected to treatment and M  is the 
upper bound of age.   is the ratio of that newborns 

produced from normal infected individuals are 
vertically infected and remaining part (1- ) of 

newborns are susceptibles. b is the fraction of babies 
born HIV free by treated infective mothers.  
The force of infection is given by 

 
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Where  a,a  be the transmission rate 

between the susceptible individual aged a and the 

normal infective individual aged a . Similarly  a,a  

be the transmission rate between the susceptible 
individual aged a and the treated infective individual 

aged a . 

We shall also assume that the AIDS patients 
have full-blown symptoms and are easily noticeable 
and not sexually interacted with any other class then 
the sexually active and interacting number of adults,  

       t,aUt,aIt,aSt,aN   

The initial conditions are given by 

   aSt,aS 0 ,    aNt,aN 0 , 

   aIt,aI 0 ,    aUt,aU 0 ,              (2.9) 

Where  a,a  is the infection coefficient, 

also commonly interpreted as the probability that a 
susceptible individual age a interacts with a normal 

infective individuals aged a  and becomes infected. 

   
M

dat,aStS
0

,    
M

dat,aItI
0

, 

   
M

dat,aUtU
0

, 

We use this model to formulate an HIV/AIDS 
model with two age groups mopdel where Group I is 
made up of sexually immature children and Group II is 
made up of sexually mature and active adults. We 
model the dynamics of the spread in heterosexual 
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 transmission made up of ordinary differential 
equations. 
Derivation of the Two-Age Groups HIV/AIDS Model 

Let the population be divided in 2-age groups 

by the age intervals ),[ 1jj aa for j =1, 2, where

Maaa  2100 . The respective number of 

susceptibles and infective cases in the jth age group 

),[ 1jj aa  is given by 

           
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Assume that at the start of epidemic, the 
population is at steady age distribution with 
exponential growth in all the classes so that 

   aWet,aN qt  and the number of individuals in 

the age interval ),[ 1jj aa is 
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Where   j

a

a
PdaaW

j

j





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 is the size of he 

jth age group at steady state at time t = 0 and W(a) is 
the total population at a and q is he intrinsic rate of 
growth of population at steady age distribution. For 

jj aaa 1  let   ja   ,   ja   , 

  ja   . Let the age specific infection rate be 

class-dependent and written as   jt,a    and 

  jt,a    and assume a constant birth rate 

  ja    such that our renewal equations become 
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2

1
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For each j = 1,2, we allow transfer between 
the two age groups to be through constants ci called 
transfer rate constants so that the way an individual, 
in each epidemiological class, crosses into another 
age group is described by 

   tSct,aS jjj  ,    tIct,aI jjj  ,  

   tUct,aU jjj  ,    tAct,aA jjj  ,  

  jjj PcaW     

The transfer rate constants cj are given by 
the reciprocal of the average length of the jth interval 

11, 17], 
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For the force of infection defined in equation 

(2.8), let the constant rate   jka,a   , for 

),[ 1 jj aaa represent a constant interaction 

between susceptibles in the jth age group and 
infectives in the kth age group 
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 From this, we have for j=1, the force of infection in Group I given by  
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and for j=2 , the force of infection in Group II given by        tiPtiPtiPt k
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their no sexual interaction among individuals in group I and between individuals in group I and group II, we have all 

the terms in 11 , 12 , 21 , 11 , 12  and 21  zero. Thus, we have   01 t ,   01 t ,    tiPt 22222    

and    tuPt 22222   . Integrating equation (2.1) w.r.t. a, over ),[ 1jj aa gives 
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and using the first expression of eq. 3.1 

         tStStS
dt

dS
t,aSt,aS jjjjjj

j

jj   1                       (3.10) 

for j=1 eq. (3.10) gives 

         tStStS
dt

dS
t,St,aS 111111

1
1 0    

 
)t(qs

Pe

tS
)t(s

qt

'
'

1

1

1
1   

           )t(qstStStSt,aSt,S
Pe

)t(s
qt

'

11111111

1

1 0
1

   

              )t(qstStSctbUtItS
Pe

)t(s
qt

'

111112222

1

1 1
1

   

         )t(scqtbutis
P

P
)t(s'

111222

1

22
1 1 


                      (3.11) 

Similarly we get other equations 

For j=2          tStStS
dt

dS
t,aSt,aS 222222

2
12                    



 
 
 
 
 

200 

 

 

P: ISSN No. 0976-8602       RNI No.UPENG/2012/4262     VOL.-8, ISSUE-2 (Part-1) April 2019 

E: ISSN No. 2349-9443                                            Asian Resonance 

  
)t(qs

Pe

tS
)t(s

qt

'
'

2

2

2
2   

           )t(qstStStSt,aSt,aS
Pe

)t(s
qt

'

222222221

2

2

1
   

  )t(scq)t(s
P

P
)t(s'

122221

2

12
2 


                             (3.12) 

           


 

j

j

j

j

j

j

a

a
jjj

a

a
j

a

a
j

j

jj dat,aIdat,aSdat,aS
dt

dI
t,aIt,aI

111
1   

for j=1            tItStS
dt

dI
t,It,aI 11111111

1
1 0    

 
)t(qi

Pe

tI
)t(i

qt

'
'

1

1

1
1   

             )t(qitItStSt,aIt,I
Pe

)t(i
qt

'

1111111111

1

1 0
1

   

 
    )t(icqti

P

Pp
)t(i'

111112

1

22
1

1






                         (3.13) 

for j=2            tItStS
dt

dI
t,aIt,aI 22222222

2

12    

 
)t(qi

Pe

tI
)t(i

qt

'
'

2

2

2
2   

             )t(qitItStSt,aIt,aI
Pe

)t(i
qt

'

22222222221

2

2

1
   

       tIcqtsts)t(i
P

Pc
)t(i'

2222222221

2

11
2                 (3.14)   

         


 

j

j

j

j

a

a
jj

a

a
j

j

jj dat,aUdat,aI
dt

dU
t,aUt,aU

11
1   

         tUtI
dt

dU
t,aUt,aU jjjjj

j

jj   1  

for j=1   

 

 
)t(qu

Pe

tU
)t(u

qt

'
'

1

1

1
1   

           )t(qutUtIt,aUt,U
Pe

)t(u
qt

'

1111111

1

1 0
1

   

           )t(ucqtitubtpi
P

P
)t(u '

11111122

1

22
1 1 


              (3.15) 

for j=2          tUtI
dt

dU
t,aUt,aU 22222

2
12    

         tUtI
dt

dU
t,0Ut,aU 11111

1
1 



 
 
 
 
 

201 

 

 

P: ISSN No. 0976-8602       RNI No.UPENG/2012/4262     VOL.-8, ISSUE-2 (Part-1) April 2019 

E: ISSN No. 2349-9443                                            Asian Resonance 

  
)t(qu

Pe

tU
)t(u

qt

'
'

2

2

2
2   

           )t(qutUtIt,aUt,aU
Pe

)t(u
qt

'

22222221

2

2

1
              (3.16) 

  
Then, equation (3.11)-(3.16) give the two-age groups HIV/AIDS epidemic model as  
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Analysis of the Model 
Assuming a Constant HIV Prevalence  

Consider the case where the HIV prevalence, in the sexually active adult group, is a constant. Then the 

infection rate  t2 and  t2  can be taken constant. Here, we will assume that there is no sexual interaction with 

the AIDS group and as such, in epidemiological class we will have 1 jjj uis  for j=1, 2. Thus, the system can 

be reduced to a 4-dimensional system with 111 1 uis   and  222 1 uis  , to give 
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Positivity of Solutions 

 In this section, we prove that all solutions of 
the system (4.1)-(4.4) with positive initial data will 
remain positive for all times t >0. 
Lemma 1 

Let the initial data be i1(0) = i1 0 > 0 , i2(0) = i2 

0   0, u1(0) = u1 0  0, u2(0) = u2 0 0 for all t. Then, 
the solution (i1(t), i2(t), u1(t), u2(t)) of the model remain 
positive for all time t >0. 
Proof 

From equation (4.1), we have 
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From which we get, 

0111111  }t)cq(exp{c)t(i  .  

Where c1 is a constant of integration. A similar 
reasoning on the remaining equations shows that they 
are always positive for t >0.  
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Stability Analysis 

 In this section, we present the results of 
stability analysis of model (4.1)-(4.4) equilibria. 
Equilibra of the Model 

For simplicity we can write the eq. of system 
(4.1)-(4.4) 
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The endemic equilibrium for the above 
system of equation is given by 
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Endemic equilibrium will exist if  7398 mmmm   and 

3152 mmmm  . In terms of parameters condition 

can be written as 
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Local Stability of the Equilibrium  
To determine the local stability of E1, the 

following variational matrix of the system (5.1)-(5.4) is 
computed around E1 as,  
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The characteristic equation corresponding to the 
matrix is given by 
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 Since endemic equilibrium will exist if  

7398 mmmm   and 3152 mmmm  . Therefore, 

ai>0 for i=1,2,3,4. Thus by Routh-Hurwith criteria, E
*
 is 

locally asymptotically stable as if the remaining 

conditions a1a2-a3>0, and 04
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are satisfied. 
Global Stability of the Equilibrium 

To show the globally stability behavior of E1, 
we need the bounds of dependent variables involved. 
For this we find the region of attraction stated in the 
form of following lemma. 
Lemma 2 

The set 
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 is a region of attraction for the system (5.1)-(5.4). 
Theorem 1 

If the endemic equilibrium E 1  exists, then it 

is globally asymptotically stable provided the following 

sufficient condition are satisfied in  , 
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where the constants k1, k2, k3 and k4 can be chosen 
suitably 

The derivative of V along the solution of 
the system (5.1)-(5.4) can be written as  
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After maximizing the LHS and minimizing the 
RHS and choosing k1=1, the stability condition can be 
obtained as follows, 
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where the constants ki>0 (i =1, 2, 3) can be chosen 
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Numerical Analysis and Discussion 

We give here numerical simulation of the 
equilibrium and stability conditions of the model (4.1-
4.4). 

We integrate the system (4.1-4.4) by fourth 
order Runge-Kutta method using the following set of 
parameter values: P2 = 3000, P1 = 1000, ε =.002, p = 
.003, λ2 = 1.43, α2 = .02, σ2 = .2, γ2 = .124, c2 = .1, q = 
.2, μ2 = .03, ν2 =.03, θ2 = .05,  σ1 = .1, c1 = .3, μ1 = .02, 

ν1 =.004, θ1 = .003, with initial values  01i = .0396,  

 02i = .32,  01u  = .068 and  02u = .115, the co-

infection equilibrium values are computed as,            
*i1 =.03983271411,

*i2 =.3257746976,  

*u1 =.06865540307,  
*u2 =.1202275282,  

The eigenvalues corresponding to the 
endemic equilibrium E1 are given by,  
 

        -.4836058512, -.6432554463, -1.023694293, -
.8314444099 

Since all the eigen values are negative, the 
endemic equilibrium E1 is locally asymptotically 

stable. 
The nonlinear stability behavior of E1 in i2 – 

u2 and i1 – u1 plane is shown in Fig.1 and Fig.2 
respectively. We see from these figures that all the 
trajectories tend towards the equilibrium point E1. 

Hence, we infer that the system (4.1)-(4.4) may be 
globally stable about the endemic equilibrium E1 for 
the above set of parameters. The results of numerical 
simulation are displayed graphically in Figs.(3-10). 
Fig.(3-4) depicts the variation of sexually mature 
normal infective population and the population of pre-
mature infective children with time for different 
treatment rates. It is found that with the increase in 

the treatment rate 2 , the sexually mature normal 

infective population decreases and the population of 
pre-mature normal infective children also decreases 
which in turn increases the sexually mature treated 
infective population and pre-mature treated infective 
children (see Figs.5-6) . Figs.(7-10) show the effect of 

age-specific force of infection 2  on all the classes. It 

is clear that with increase in the value of 2 , the 

population of all the classes increase which make the 
disease more endemic.   

Fig.1.  Global stability in i2 – u2 plane 
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Fig.2.  Global Stability in i1-u1 plane 

 
Fig3. Variation of sexually mature normal 

infectives with time for different rate of 2  

 
Fig4. Variation of sexually immature normal 

infective children with time for different rate of 

2  

 
 

Fig5. Variation of sexually mature treated 

infectives with time for different rate of 2  

 
Fig6. Variation of sexually immature treated 

infective children with time for different rate of 

2               

 
Fig7. Variation of sexually immature treated 

infective children with time for different rate of 2  
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Fig8. Variation of sexually immature normal 

infective children with time for different rate of 2  

 
Fig9. Variation of sexually mature normal 

infectives with time for different rate of 2  

 
Fig10. Variation of sexually mature treated 

infectives with time for different rate of 2  

 
 

Conclusion 

In this paper, a continuous age-structured 
model has been taken to derive a two-age groups 
HIV/AIDS epidemic model. It is assumed that HIV 
infection confers treatment, and the infective agent 
can be transmitted not only by horizontally but also 
vertically from adult individuals to their newborn. The 
model is first derived as a system of partial differential 
equations, and then age groups are defined so that by 
adding up all the individuals within each age group, 
the model reduces to a system of ordinary differential 
equations. The model is analyzed by using stability 
theory of differential equation and numerical 
simulation. We show that both the disease-free and 
endemic equilibrium exists. The model analysis shows 
that the increase in treatment will decrease the 
epidemic and the epidemic slows down more rapidly if 
the treated infectives do not take part in the sexual 
contact. It is also noted that disease can be kept 
under control upto the desired level by reducing the 
contact rate between susceptible and normal infective   
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